Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases
نویسندگان
چکیده
Secreted virulence factors like bacterial collagenases are conceptually attractive targets for fighting microbial infections. However, previous attempts to develop potent compounds against these metalloproteases failed to achieve selectivity against human matrix metalloproteinases (MMPs). Using a surface plasmon resonance-based screening complemented with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed sub-micromolar affinities toward collagenase H (ColH) from the human pathogen Clostridium histolyticum. Moreover, these inhibitors also efficiently blocked the homologous bacterial collagenases, ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1, while showing negligible activity toward human MMPs-1, -2, -3, -7, -8, and -14. The most active compound displayed a more than 1000-fold selectivity over human MMPs. This selectivity can be rationalized by the crystal structure of ColH with this compound, revealing a distinct non-primed binding mode to the active site. The non-primed binding mode presented here paves the way for the development of selective broad-spectrum bacterial collagenase inhibitors with potential therapeutic application in humans.
منابع مشابه
Structural Basis for Activity Regulation and Substrate Preference of Clostridial Collagenases G, H, and T*
Clostridial collagenases are among the most efficient enzymes to degrade by far the most predominant protein in the biosphere. Here we present crystal structures of the peptidases of three clostridial collagenase isoforms (ColG, ColH, and ColT). The comparison of unliganded and liganded structures reveals a quaternary subdomain dynamics. In the unliganded ColH structure, this globular dynamics ...
متن کاملDiscovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: concurrent optimization of enzyme inhibitor potency and selectivity.
The concurrent implementation of a proteome-wide serine hydrolase selectivity screen with traditional efforts to optimize fatty acid amide hydrolase (FAAH) inhibition potency led to the expedited discovery of a new class of exceptionally potent (Ki < 300 pM) and unusually selective (> 100-fold selective) inhibitors. The iterative inhibitor design and evaluation with assistance of the selectivit...
متن کاملHigh-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils
Bacterial collagenases involved in donor infection are widely applied in many fields due to their high activity and specificity; however, little is known regarding the mechanisms by which bacterial collagenases degrade insoluble collagen in host tissues. Using high-speed atomic force microscopy, we simultaneously visualized the hierarchical structure of collagen fibrils and the movement of a re...
متن کاملDiscovery of a potent, selective, and efficacious class of reversible alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics.
Fatty acid amide hydrolase (FAAH) degrades neuromodulating fatty acid amides including anandamide (endogenous cannabinoid agonist) and oleamide (sleep-inducing lipid) at their sites of action and is intimately involved in their regulation. Herein we report the discovery of a potent, selective, and efficacious class of reversible FAAH inhibitors that produce analgesia in animal models validating...
متن کاملDiscovery of a Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor (HSK0935) for the Treatment of Type 2 Diabetes.
A new class of potent and highly selective SGLT2 inhibitors is disclosed. Compound 31 (HSK0935) demonstrated excellent hSGLT2 inhibition of 1.3 nM and a high hSGLT1/hSGLT2 selectivity of 843-fold. It showed robust urinary glucose excretion in Sprague-Dawley (SD) rats and affected more urinary glucose excretion in Rhesus monkeys. Finally, an efficient synthetic route has been developed featuring...
متن کامل